How is CyberKnife Different from Conventional Radiation
The CyberKnife is a frameless robotic radiosurgery system used for treating benign tumors, malignant tumors and other medical conditions.The system was invented by John R. Adler, a Stanford University professor of neurosurgery and radiation oncology, and Peter and Russell Schonberg of Schonberg Research Corporation. It is made by the Accuray company headquartered in Sunnyvale, California.
The CyberKnife system is a method of delivering radiotherapy, with the intention of targeting treatment more accurately than standard radiotherapy.The two main elements of the CyberKnife are:
Robotic mounting.
The CyberKnife system is a method of delivering radiotherapy, with the intention of targeting treatment more accurately than standard radiotherapy.The two main elements of the CyberKnife are:
Robotic mounting.
The original CyberKnife used a Japanese Fanuc robot, however the more modern systems use a German KUKA KR 240. Mounted on the Robot is a compact X-band linac that produces 6MV X-ray radiation. The linac is capable of delivering approximately 600 cGy of radiation each minute – a new 800 cGy / minute model was announced at ASTRO[4] 2007. The radiation is collimated using fixed tungsten collimators (also referred to as "cones") which produce circular radiation fields. At present the radiation field sizes are: 5, 7.5, 10, 12.5, 15, 20, 25, 30, 35, 40, 50 and 60 mm. ASTRO 2007 also saw the launch of the IRIS variable-aperture collimator which uses two offset banks of six prismatic tungsten segments to form a blurred regular dodecagon field of variable size which eliminates the need for changing the fixed collimators. Mounting the radiation source on the robot allows near-complete freedom to position the source within a space about the patient. The robotic mounting allows very fast repositioning of the source, which enables the system to deliver radiation from many different directions without the need to move both the patient and source as required by current gantry configurations.